IRREGULAR MOVEMENT OF GROUND WATERS
WITH EVAPORATION

N. N. Kochina

The problem of variation in the level of ground waters between two vertical channels is
examined, taking into account the evaporation, which is nonlinearly dependent on the level
of the ground waters. The problem is reduced to integration of a diffusion equation with

a right-hand side which is nonlinearly dependent on the unknown function and is solved

by a method of successive approximations. When a certain inequality is achieved, which
depends on the magnitudes entering the conditions of the problem, the method of successive
approximations converges.

We will examine a problem of variation in the level of ground waters between two vertical channels,
which are at a distance L from each other, taking evaporation into account. We will suppose that the in-
tensity of evaporation of gf(h) is a given nonlinear function which is continuous with its derivative. We will
also consider that at the initial moment of time the water levels in the channels suddenly become equal to
Hi and Hz .

This problem is reduced to integration of the diffusion equation with the nonlinear right-hand part

LB AT (a2= ”Ij) (1)
boundary conditions
RO, y=H,, &L, t)=H, (2)
and the initial condition
h(z, 0)= H,, O<z<< L) (3)

Here h is the level of the ground waters, o is the inadequacy of saturation or water delivery, Hy is
the average depth of the ground flow, and y is the filtration coefficient,

For a particular form of the function f(h) the problem described by Egs. (1)-(3) is examined in [1].

Hence it is assumed that the function f(h) is constant or depends linearly on the difference h-h, if
h>hy, where hy is a certain critical level of ground waters, and if the ground waters occur sufficiently deeply
(h<hg), then f(h) =0 (this can be neglected with evaporation).

We will assume below that the level of the ground waters exceeds the critical level hy (h > hy).
Let hy (x) be the steady-state solution of Eq. (1) with boundary conditions (2), i.e., the solution of the
problem

P L Fh) =0,  ho(0)=Hi,  ho(L)=H, @

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No, 4, pp. 102-105,
July-August, 1970. Original article submitted April 8, 1970,

© 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for $15.00.

611



It is easily seen that the function hy (x) is determined by the relation

ho %
- e [ =2
X = iH V‘m ("(u) = a® S f(v)dv) (5)
1 Hy
where c is the root of the equation
Hs d
U
L=i$ VioJT (©)
Hy
Introducing a new function z for h(x, t):
h(z, )=ho(@) +2( (7
on considering (4), we reduce the problem (1) to (3) to the following problem in the same region 0<x<L:
) &2
=0 5+ [ e (&) + 2] — f [ho ()] (8)
20, §=z(L, =0, z(z, 0)=Ho— hy(2) (9)

The solution of this problem will be sought by a method of successive approximations,

The following inequalities are established:

[f@I<M,  [f(9)|<M (10
We demonstrate the convergence of the method of successive approximations in the case of
HsML? | a* =g <1 (11)
Designating for brevity
Dz a)=Flhy(@) + 21 —Floy @), KL (2)=Hy,—hy () (12)

we examine the succession of the approximations z4(x, t) determined on considering (8) and (9) by the re-
lationships

Tt = Tt 0,2, PO (0020 (13)
We will find the solution of the linear problem (13) in the form of the summation
Zpd1 = U + vy (14)
Here u is the solution of the diffusion equation
ou _ o w(0,0)=u(Ll,t)=0 (15)

%V EY u(z,0)=Q ()
and vp4q is the solution of the inhomogeneous equation with the homogeneous boundary and initial conditions

[ Uns1 (0’ t) = Unn1 (I‘7 t) =0

Ung1

i)
— g2 nt+l - 1
a =% am TPED @0 =0 (e
We will look for the solution u of Eq. (15) with boundary conditions in the form
o
— Rt k
U= kgl Cyexp == sin "1 (17
Here the coefficients Ck are determined from the initial condition (15). We obtain
2 3 k.
0
The function vy, will be sought in the form of the series
bt 202k? k
Uns = 2 D™ (t) exp _nLZ ! sin n——g— 19)

k=1
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It is seen from this formula that the boundary conditions (16) are satisfied. It follows from the ini-
tial conditions (16) that the unknown functions Dy(1) (t) must fulfill the conditions

DMy =0 (k=14,2, ..0==0,1,2, .. {20)
We will expand the function & (zp, x) into the Fourier sine series
3! () sin = o R = {—S@ {2 (¥, £), y1 sin 2 dy (21)
E=1

Substituting into Eq. (16) the series (19) and (21), we obtfain

D " ‘1128 kzt

=A@ exrpTHE (=1, 2. n=0,1,2,..) (22)

Integrating Eq. (22) and taking into account the condition (20), we find
4

Dy (t) = (1 (x) exp

0

1ak"~r: dt (23)

Now, substituting Eq. (23) in Eq. (19) and taking the expression (21) into account for fk(m {t}, we find
the final equation for determining the function V(n+1) (x, tk

o L
v (@ ) = 3 {(@ 12,0, ),y exp ZEEE=D o He i B gy (24)
"='1o 8
It is easy to see that the series (24) converges uniformly (its general term does not exceed the mag-

nitude 4M1.2/n%a%k?).

Assuming that the nth-approximation z, (%, t) is known, (n +1)th approximation will be determined by
Egs. (14), (17), (18), and (24) using the designations (12).

We will demonstrate that all the approximations vy (x, t} are limited by the same constant.

On considering (10), the inequality follows from (24) (the range of the continuous functions C is ex-
amined):

Jons {z, H<e, ¢= s (S = 2 ‘;é:a‘) (25)

gl
k=1
As is already known [2], the sum S=(1/)r?. Consequently (11) results from Eq. (25).
We will demonstrate the convergence of the method of successive approximations in the case q<1.

For the difference of two consequent approximations, we obtain from (24) the following expression:

o tL
2
Unst (xs t) — Vp (:t t) =1 2 S{(D [Zn (y’ T)v y] - [zn—l (y, 7)» _l]]} (26)
k=104
X exp VT “Wif;(t—f) sin Hix sin “ky dy dv
According to the mean value theorem,
@2, (y, ) ¥] — O [2na (1, ¥), 91 = D' [0, ¥1(2, (¥, ) — Zas (¥, 7)) 27

where 6 is situated between z,_, and z,. From (27), (26), and (10) and also using (14), we consequently
find
' "Uﬂ+1""vn”<q”zn—zn—1[[1 (]Uﬂ+1"'-vnn“‘<~quvn~v"‘1 “ (28)
From (28) it is seen that in the case q<1, the series converges uniformly. The evaluation
lonn — va| << g fvs — voly [2na — 22| < g™ )21 — 20] 29

follows from the inequalities {28),

The level of the ground waters h (x, t) is determined on considering (7}, (14}, and (24) by the relation-
ship
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h(z, t) = hy(z)+ u(z, 1)+ limp, (z, t) (30)
where u (x, t) is given by the relationships (17) and (18) and vp4, (x, t) is given by Eq. (24).

It is easily seen that if the intensity of evaporation is a constant magnitude f(h) = —q, then the depth
of the ground flow h (x, t} is represented by the following expression:

bz, t) = hy(z) -+ 2 a5 exp — TR sin TS

— R L
Ho— Hi
hc(x)=-—2°;2x2+( 21‘ : —2’%%):1:—{—[11 (31)

2 (Hy— Hy 1~ (Ha— H al? [t — (—1)¥
e dEteean | puog)

Now let f(h) = —Bh (the intensity of evaporation is a linear function of the depth of the ground flow,
calculated from the bottom of the reservoir).

Using the Egs. (17), (24), (5), (12), and (18) and approaching the limit in Eq. (30), we find the
relationship between the level of ground waters andx and t:

h(z, t)=hy(z)+ ébkexp[——— ([3+ “2'2?2 ) t]sin 5?—

o (@) = HishA{L —z)+ Heshhz (k: v’g‘)

ShAL 2 (32)

2 H— () 1,
b= 2 (= 2y (—A (0, — Hy) -+ SLE

The direct integration of Eq. (1), in which f(h) =—Bh, with boundary conditions (2) and the initial con~
dition (3) leads to the same result (32),which is known in the theory of filtration.
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